
Appendix B

Software

This appendix describes the software needed for the computer exercises and prob-
lems in this book. It has been tested on Windows 7, Linux, and OS X. Please go to
the book’s web site for any updates to this information.

If you are not able to install the software with the directions below, please find
someone to help you.

The three pieces of software you need are Python, sympy, and ga. All are freely
downloadable from the web. Python is a multiplatform computer language. SymPy
is a computer algebra system written in Python. Commercial computer algebra sys-
tems include Maple and Mathematica. These systems provide symbolic computation
capabilities. ga, also written in Python, adds symbolic geometric algebra and calculus
capabilities.

• Python. Install the latest Python 2.7 version from http://www.python.org/

download/releases/. (Python 3 will not work.) Full documentation is at http:
//docs.python.org.

• sympy. Install the latest Python 2 version from http://code.google.com/p/

sympy/downloads/list. Full documentation is at http://docs.sympy.org

• ga. Download ga.zip from the book’s web page. Unzip it into your site-packages
directory. There is a file setgapth.py in the new ga directory. On a Windows
system simply run it. On a Linux or OS X system open a terminal in the ga
directory and enter “sudo python ./setgapth.py”. You will be asked for your
password.

This appendix provides documentation of the ga module for use with this
book. It gives only a minimal introduction to ga sufficient to solve problems from
the text. In some situations there are simpler approaches to those described here.
But to include them would complicate this appendix. Full documentation is in
the file ga.pdf in ga.zip.

• numpy. This is Python’s package for numerical calculations. Install the latest
version from http://sourceforge.net/projects/numpy/files/NumPy/. Full
documentation is at http://docs.scipy.org/doc/

http://www.python.org/download/releases/
http://www.python.org/download/releases/
http://docs.python.org
http://docs.python.org
http://code.google.com/p/sympy/downloads/list
http://code.google.com/p/sympy/downloads/list
http://docs.sympy.org
http://sourceforge.net/projects/numpy/files/NumPy/
http://docs.scipy.org/doc/

172 Chapter B: Software

Vector Calculus

The file ”Template.py” at the book’s website provides a template for your Python
programs. Remove or uncomment lines before starting with your program to suit your
needs.

The first line in all SymPy programs should import SymPy:
from sympy import *

Differentiation, including partial differentiation. Note that everything on a line
following a “#” is a comment.

x,y = symbols(’x y’) # Define the symbols you want to use.

print diff(y*x**2, x)

Output: 2*x*y

print diff(diff(y*x**2,x),y)

Output: 2*x

Jacobian. Let X be an m × 1 matrix of m variables. Let Y be an n × 1 matrix of
functions of the m variables. These define a function f : X ∈ Rm 7→ Y ∈ Rn. Then
Y.jacobian(X) is the n×m matrix of f ′x, the differential of f .

r, theta = symbols(’r theta’)

X = Matrix([r, theta])

Y = Matrix([r*cos(theta), r*sin(theta)])

print Y.jacobian(X) # Print 2× 2 Jacobian matrix.
print Y.jacobian(X).det() # Print Jacobian determinant (only if m = n).

Sometimes you want to differentiate Y only with respect to some of the variables
in X, for example when applying Eq. (3.25). Then replace X in Y.jacobian(X) with
only those variables. For example, the command print Y.jacobian([r]) produces
the 2× 1 matrix [cos θ

sin θ].

Integration.
integrate(f, x) returns an indefinite integral

´
f dx.

integrate(f, (x, a, b)) returns the definite integral
´ b
a
f dx.

x = Symbol(’x’)

print integrate(x**2 + x + 1, x)

Output: x**3/3 + x**2/2 + x

Iterated Integrals.
This code evaluates

´ 1

x=0

´ 1−x
y=0

(x+ y) dy dx:
x, y = symbols(’x y’)

I1 = integrate(x + y, (y, 0, 1-x))

I2 = integrate(I1, (x, 0, 1))

evalf.
print log(10), log(10).evalf(3)

Output: log(10) 2.30

173

Geometric Calculus

If you want to use the ga module of SymPy, you must import it and specify the Gn in
which you want to work. For G3 give these commands:

from sympy import *

from ga import *

basis = ’e1 e2 e3’

metric = ’1 0 0, 0 1 0, 0 0 1’

coords = (x,y,z) = symbols(’x y z’)

(e1,e2,e3,grad) = MV.setup(basis,metric,coords)

Now you can define multivectors, e.g, M = 3*x*y*e1 + 4*e1*e3. These operations
on multivectors are available:

+ add

− subtract

∗ geometric product

< inner product (as defined in Appendix A)

∧ outer product

M.norm() |M |
M.norm2() |M |2

M.grade(k) 〈M 〉k
M.grade() 〈M 〉0
M.rev() M†

MV.I I Normalizing can fail. MV.i gives unnormalized pseudoscalar.

MV.Iinv I−1

If you see the arithmetic expression 2 + 3 ∗ 4 you know to multiply 3 ∗ 4 first and
then add 2. This is because mathematics has a convention that multiplication comes
before addition. We say that multiplication has higher precedence than addition. If
you want to add first, write (2 + 3) ∗ 4.

For the arithmetic symbols used this book, Python’s precedences from high to
low are ∗ , +− , ∧, < . Plus and minus are grouped because they have the same
precedence. This book’s precedences are ∗ (geometric product), ∧ (outer product), <
(inner product), +−. The low precedence of +− causes a problem. Consider the ex-
pression e1 + e2 ··· e3. Python evaluates this as (e1 + e2) ··· e3 = 0. If you intend
e1 + (e2 ··· e3) = e1, in accord with the precedences of this book, then you must use
parentheses.

Here are the rules to get the results you intend. Break a multivector expression
into what you consider its terms. Call a term safe if it is a scalar times a geometric
product of vectors. Most terms are safe or can be rewritten as safe. Fully parenthesize
terms which are not safe, including parentheses around them.

Consider again the expression e1 + e2 ··· e3. If you consider its terms to be e1 and
e2 ··· e3, then e2 ··· e3 is not safe and must be rewritten (e2 ··· e3). If you consider it to be
a single term, (e1 + e2) ··· e3, then it is not safe, and must be written that way. If there
are other terms, it should be written

(
(e1 + e2) ··· e3

)
.

174 Chapter B: Software

∇. The variable grad returned from MV.setup above is a special “vector” which
represents the gradient ∇.

grad is applied to functions. Functions can be defined in two ways:

A = MV(’A’,’vector’, fct=True)

A = x + y*e1 + (z*e1 ∧ e2)

(How would this evaluate without parentheses?)

The first line creates a general vector valued function on R3 with arbitrary coefficients.
The possible grades are scalar, vector, bivector, spinor (an even multivector – see
Problem 4.2.4), and mv (general multivector).

The second line creates a specific multivector valued function. (If e1 and e2 are
orthogonal, then ‘∧’ can be replaced with ‘∗’, and the parentheses removed.)

Now we can compute the gradient, divergence, and curl of A:

grad * A, grad < A, grad ∧ A.

Sometimes you want to substitute specific values in a function:

(grad ∧ A).subs({x:1,y:2,z:3})

Directional Derivative.
(h1, h2, h3) = symbols(’h1 h2 h3’)

h = h1*e1 + h2*e2 + h3*e3

print ’Directional derivative =’, DD(h,A)

Unfortunately, (h < grad)*A will not work.

Curvilinear Coordinates. Curvilinear coordinates must be defined before they can
be used:

coords = (rho,phi,theta) = symbols(’rho phi theta’)

curv = \
[rho*sin(phi)*cos(theta), rho*sin(phi)*sin(theta), rho*cos(phi)],

[1,rho,rho*sin(phi)]

(erho,ephi,etheta,grad) = \
MV.setup(’e rho e phi e theta’, metric, coords, curv=curv)

The two single “\” characters designate a line continuation. Python does not
require a “\” for the other line continuation. (But it is permitted there.) I used line
continuations because of the length of lines in this book. You might not need them in
your Python programs. Even if you don’t need them, they can improve readability of
your code.

The first part of curv defines spherical coordinates (Eq. (1.10)). The second part
specifies that |xρ| = 1, |xφ| = ρ, |xθ| = ρ sinφ (Exercise 5.23a).

Now proceed with grad as before.

Reciprocal Basis. (xur, xvr, xwr) = ReciprocalFrame((xu,xv,xw)) returns the
reciprocal basis of (xu, xv, xw) in (xur, xvr, xwr).

175

Manifolds

To do geometric calculus on a manifold import a third module:

from sympy import *

from ga import *

from manifold import *

Then set up a Gn as described above.

Define a manifold M parameterized by x(u, v):
Mvar = (u,v) = symbols(’u v’)

X = u*e1 + v*e2 + (u**2+v**2)*e3

M = Manifold(X,Mvar)

(xu,xv) = M.basis

There are two ways to define a field f on M :
f = (v+1)*xu + u**2*xv # Use the tangent space basis.

f = u*e1 + v*e2 + u*v*e3 # Use the Rn basis.

Compute the vector derivative ∂f , divergence ∂ ··· f , curl ∂ ∧ f :
M.grad * f, M.grad < f, M.grad ∧ f.

Compute the directional derivative ∂h(f):
h = xu + xv

M.DD(h,f).

Project a field f defined on M to M :
M.Proj(f).
Use this to compute a coderivative (Problem 5.5.1).

176 Chapter B: Software

Printing

By convention, a single underscore “ ” in output indicates a subscript and a double
underscore “ ” indicates a superscript.
(e1,e2,e3) = MV.setup(’e 1 e 2 e 3’, metric)

A = MV(’A’,’vector’)

print ’A =’, A

Output: A = A 1*e 1 + A 2*e 2 + A 3*e 3

The coefficients are superscripted by convention. Notice that e1 is used in the left side
of the first line and e 1 on the right. e1 is the variable name used in the program. e 1

is what is printed.

There are three options for improving the looks of the output of print statements:
(i) Fmt, (ii) enhanced printing for console output, and (iii) LATEX output compiled to
a pdf file.

Fmt. The command Fmt(n) specifies how multivectors are split over lines when
printing:

n = 1: The entire multivector is printed on one line. (The default.)
n = 2: Each grade of the multivector is printed on one line.
n = 3: Each component of the multivector is printed on one line
The n = 2 and n = 3 options are useful when a multivector will not fit on one line.

If the code A.Fmt(n) is executed, then A will print as specified. If A.Fmt(n,’A’) is
executed, the string ‘A = ’ will print, followed by A, as specified by n. You can print
a variable with one n and later with another.

Enhanced printing. If you are sending your output to a console window, i.e. you
are not using the LATEX output described below, then you may issue the statement

enhance print()

after the MV.setup statement. Then bases are printed in blue, functions in red, and
derivative operators in cyan, making the output more readable.

To set this up in Windows you must tell Geany to use a special console program
in GA.zip. Go to Edit/Preferences/Tools/Terminal. Navigate to and select

Lib\site-packages\GA\dependencies\x32\ansicon.exe or
Lib\site-packages\GA\dependencies\x64\ansicon.exe,

according as you are running a 32- or 64-bit system.
On Linux or a Mac you need do nothing.

177

LATEX output. If you have an appropriate LATEX system on your computer,1 then
output from Python print statements can be sent to a tex file and automatically
compiled and displayed on a pdf reader, with beautiful LATEX typesetting. It is helpful,
but not necessary, to know a bit of LATEX for this.

Invoking LATEX printing requires an extra import from ga print import *,
Format() after your import statements, and xdvi() at the end of your program. On
Windows, the pdf output is opened in the associated pdf reader. On Linux, it is
opened in the standard evince pdf reader.

Here is an example of this capability. When printing a string, an underscore “ ”
designates a subscript. A caret “̂” (not a double underscore) designates a superscript.
print ’\\alpha 1\\bm{X}/ \\gamma r̂ 3’

Output: α1X/γ3
r .

The file Symbols.pdf, available at the book’s website, is a listing of common LATEX
symbols. The symbols there are preceded with a “\”. They can be printed from your
Python programs by preceding them with a second “\”, as in the example.

This example prints some geometric algebra/calculus symbols:
print ’\\bm\\nabla, \\wedge, \\cdot’ \\partial, \\bm\\partial’

Output: ∇, ∧, ···, ∂, ∂

In LATEX mode, the statement print ’A =’, A from the beginning of this heading
produces the output A = A1e1 + A2e2 + A3e3. The coefficients are superscripted by
convention.

This extends:
(ax, bx) = symbols(’a x, b x’). Then ax and bx print with subscripts.
(ax, bx) = symbols(’a x, b x’). Then ax and bx print with superscripts.

1TeX Live is known to work, as is MiKTeX on Windows.

	VI Appendices
	B Software

